Ammonia Carbonation and Biomass Pyrolysis for Carbon Management

James W. Lee,1* Danny Day,2 Robert J. Evans,3 and Rongfu Li,4

¹Oak Ridge National Laboratory, Oak Ridge, TN 38831 USA

²Aprida, Inc., Atlanta, GA 30339 USA

³National Renewable Energy Laboratory, Golden, CO 80401 USA

⁴Former Jinhuashi Chemical Fertilizer Company, China

*Corresponding E-mail: Leejw@ORNL.gov, Tel:574-1208; Fax:574-1275

This Technology Could Transform Two Industrial Greenhouse-Gas Emitters into an Environmentally Remedying and Productive System

OAK RIDGE NATIONA U. S. DEPARTMENT OF F

Validity of the Proposed Technology Concept Can Be Seen by Comparison between Two Fertilizer Production Reactions

The proposed CO₂-solidifying NH₄HCO₃ production process:

$$3CH_4 + 4N_2 + 14H_2O + 5CO_2 \rightarrow 8NH_4HCO_3 \downarrow \Delta_rG^\circ = \&5.44 \text{ kJ/mol}$$

The current ammonium nitrate production process emitting CO₂:

$$3CH_4 + 4N_2 + 2H_2O + 8O_2 \rightarrow 4NH_4NO_3 + 3CO_2$$

Chemical Pathways for Simultaneous Removal of Major ${\rm CO_2}$ and ppm Levels of ${\rm NO_x}$ and ${\rm SO_x}$ Emissions by Innovative Application of the Fertilizer Production Reactions

Fundamental Question to Be Answered by Experiment: Is is feasible to use ammonia-carbonation reaction to remove CO₂ emissions from industrial flue gas?

 $NH_3 + CO_2 + H_2O \rightarrow NH_4HCO_3$ $\triangle_rG^\circ = \&18.05 \text{ kJ/mol}$

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Market Analysis Showed:

The Proposed Ammonia-Scrubbing Technology Can Be Profitable

(Market Prices from Chemical Marketing Reporter January, 2002)

Product	Market Price \$/lb-mol	Market Price \$/metric ton	To solidify 3.7 ton of CO_2 (1 ton of carbon), it will:
NH ₃ fertilizer grade	\$1.23	\$159	need \$225 (1.4 ton) of NH ₃
NH ₄ NO ₃ fertilizer grade	\$5.25	\$145	
NH ₄ HCO ₃ fertilizer grade	\$2.63 ^a	\$73 ^a	produce \$481 (6.6 ton) of NH ₄ HCO ₃
NH ₄ HCO ₃ food grade ^b	\$27.06	\$755	

a. Based on a per lb-atom N value of NH₄NO₃.

b. Commonly used as a food leavening agent.

Potential Capacity of the Proposed Ammonia-Scrubbing Technology for Removal of Industrial CO₂ Emissions

Year	World annual nitrogen fertilizer consumption*	Possible capacity for CO ₂ solidification	Potential carbon credit
1994	80 million tons N/year		
2010	100 million tons N/year	315 million tons CO ₂ /year	18.6% (U.S.) or 4.8% (world) reduction in CO_2 emissions from coal-fired power plants
2025	120 million tons N/year	378 million tons CO ₂ /year	22.3% (U.S.) or 5.76% (world) reduction in CO_2 emissions from coal-fired power plants

Data from: Kawashima, K., K. Okamoto, M. J. Bazin, and J. M. Lynch (1998) "Nitrogen fertilizer and ecotoxicology: Global distribution of environmental pollution caused by food production," Biotechnology Research Series 7:208–219.

A Preliminary Test Reactor System Constructed through a Small Seed Money (\$70K) Project

Illustration of the Test Reactor System Constructed at Our Lab

Our Experimental Results: Measurements of CO₂ Removal by Ammonia Carbonation in the Gas Phase

Our Experimental Results: Solid Product Produced by Ammonia Carbonation in the Gas Phase

Solid Products (NH₄HCO₃ and NH₂COONH₄) from Ammonia-Carbonation Experiments Were Identified by NMR Analysis

Conceptual Design to Remove CO₂ Emissions in Industrial Combustion Facilities by Ammonia Carbonation

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Integration of Ammonia Carbonation and Biomass Pyrolysis for Carbon Management

Potential Application of Ammonia Carbonation for Removal of CO2 from Biomass Pyrolysis to Make Pure H2

Intelligent Application of NH₄HCO₃ to Enhance Sequestration of Carbon into Soil/Subsoil Earth Layers

Expected Benefits from the Invention

